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Analys is  of the var ia t ional  p r inc ip les  for  nons ta t tonary  nonequi l ibr ium p r o c e s s e s  [1-5] f rom 
the mechanical  analogy viewpoint p e r m i t s  it to be es tab l i shed  that by s tar t ing  f rom the v a r i a -  
t ional  condition (6) it is poss ib le  to go over  to o ther  known ex t r ema l  modes .  The nature  of 
these  t r a n s f o r m a t i o n s  is s i m i l a r  to the Gauss method for  going f rom the D 'A lember t  pr inciple  
to the pr inciple  of l ea s t  cons t ra in t  in mechanics .  

In connection with the d ive r s i ty  of the var ia t ional  f o rms  exist ing in the l i t e r a tu r e  [1-5], the question 
a r i s e s  as  to whether  they a r e  a l t e rna t ives  o r  analyt ical  re la t ionships  between them exis t .  

We show below that  the var ia t ional  condition [5] obtained by detai led analogies  between the rmodyna-  
mic  motion and the mechanics  of d iss ipa t ive  s y s t e m s  is suff icient ly genera l ,  and admi ts  of analyt ical  t r a n s -  
fo rmat ions  reducing it to o ther  var ia t ional  formula t ions .  The nature  of these  t r ans fo rma t ions  is analogous 
to the c l a s s i ca l  method of going f r o m  the D ' A l e m b e r t  pr inc ip le  to the Gauss pr inciple  of l eas t  cons t ra in t  in 
mechanics  [7]. 

F i r s t ,  le t  us reca l l  that  in the l inea r  modification the the rmodynamic  and diss ipat ive  fo rces  a r e ,  
r e spec t i ve ly  

X h _  OAS , k =  t, 2, . . .  n, (1) 
Ox k 

OD k = I, 2 . . . .  n. (2) 
Qk- axe' 

The deviation of the entropy f rom its equi l ibr ium value is expanded in a s e r i e s  with second o rde r  accuracy:  

A s -  1 ~ (3) 
2 ~ gihXiXk ' 

i,k 

and the d iss ipat ion function D is a b i l inear  f rom in ~k 

D (xx ' )= -~ - .  C~Z.x,x~ (4) 

with r ec ip roc i ty  re la t ions  for  the phenomenological  coeff icients  

Lib = Lki, i, k - -  1, 2 . . . . .  n. (5). 

Le t  us s t a r t  f rom the var ia t ional  condition [5], which is in different ia l  f o r m  

t t  

- -  6 (AS) + ~ Q~x~ = 0. (6) 
i 

On the bas i s  of (6) it has been shown in [5] that  the kinetic equations 

OD 
Oxl -- Xi' i =  i, 2 . . . . .  n, (7) 
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have Lagrangean s t ruc ture  taking account of the dissipative fo rces ,  hence there  is no thermodynamic  ana-  
log of the kinetic energy in connection with the total noninert ia of the i r r ev e r s i b l e  phenomena. 

Taking into account that 

(6) can be reduced to the following: 

The Biot variat ional  pr inciple  [2] is 

Oxi 

(AS) = ~ Xi6x,, (8) 
It 

~.~( OD Xi) 6xi = 0" (9) 

- -  )~Xi ) 6xi = O, i := 1, 2, . . . ,  n, (I0) 

which Biot calls the principle of minimum ra te  of entropy generation:  the t rue  veloci t ies  xi minimize 
entropy production under the condition that the thermodynamic forces  and the intensity of the i r  supply 
~ X i ~ ( a r e  given. The re fo re ,  the quantity 2D(~)  is var ia ted while the quantity ~.Xix i remains  constant,  but 

1 
n 

2D-~ ~ X,xi, (11) 
i 

in which connection the Biot principle is represented quite formally [8]. As regards the application of (10) 
to specific problems, then as has been remarked in [9], such difficulties arise for the case n > 1 that the 
Biot principle loses its attractiveness. This has not been observed when using the variational oondition (9), 
which has been applied with the same success for any n in examining scalar and vector processes [5]. 

The variational condition (9) has the nature of the D,Alembert principle and, therefore, is not asso- 
ciated with the extremality concept. It is known that Gauss proposed a remarkable interpretation of the 
D'Alembert principle by introducing the minimality concept in the latter (the principle of least constraint). 
Using this idea, let us transform (9). 

At some time t let the system state xl, x 2 . . . . .  x n be given. The system state at the time t + T can be 
determined by the Tay lor  se r i e s  

xl (t + ~) ----- x~ (t) + xi~ + . . .  (12) 

Since the x i a r e  given at  the initial instant t ,  then the variat ion of the f i r s t  m em b er  in (12) vanishes and 

6xi (t -~ ~) ----- 6},T. (13) 

Any virtual changes in the parameter, compatible with the relations including (13) referred to the time t + % 

can be taken as 5x i in (9). 

Le t  us wr i t e  (9) in application to the t ime t + T, l e t  us hence take account of (2) and le t  us divide both 
sides of the equality by T: 

(Q,- x,) ~,  = 0 (14) 
i 

Although the transformations going from the D,Alembert to the Gauss principle have not been completed, 
let us examine (14) in greater detail. It is easy to see that (14) is none other than the Onsager variational 
principle  [1]. Indeed, taking into account that 

k 

i 

L~'x~6x k = 6D (xx), (17) 
k 

we obtain at once 

6 I~ (xX) -- D (xx)lx = 0. (18) 

The forces are not variated in the Onsager variational condition (18). The linear equations of thermodyna- 
mics together with the reciprocity relationships are equivalent to the ex~remal principle (18), which Onsager 
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cal led the pr inciple  of l e a s t  ene rgy  dissipat ion.  As has been r e m a r k e d  in [8], the name of the pr inciple  
does not co r respond  to i ts  actual  content. 

By t r ans fo rming  (14) it is poss ib le  to p roceed  fu r the r  and to obtain the var ia t ional  condition (9) in a 
f o r m  analogous to the Gauss  pr inc ip le  of l ea s t  cons t ra in t s .  Since the the rmodynamic  fo rces  X i a r e  con- 
s idered  given and cannot be var ia ted ,  5x i can be r ep re sen t ed  as 

k 

and (14) can be rewr i t ten  as follows: 

X (Qi -- Xi) 8 X Li~ (Qh - -  Xk) = O, 
i k 

f rom which 

1 
Z ~- L~h (Oi - -  Xh (Q~ - -  Xh). 
i,k 

Going over  to the no rma l  coordinates  0j by a l inear  nonsingular  t r ans fo rma t ion  

n 

Xi ~ X miJOj ' 
l 

we find 
tl 

] Z ~2 
D---- ~ 01, 

i 

l A s =  
i 

( 1 9 )  

(20) 

(21) 

(22) 

(23) 

(24) 

and t he r e fo re ,  (21) r educes  to the express ion  

2;_ �9 (Q}_  x;)2 = ,0. (25) 
i 

Here  the d iss ipa t ive  Q]  and the the rmodynamic  Xj fo rces  a r e  exp re s sed  in t e r m s  of (23) and (24), r e s -  
pect ively .  Following Gauss ,  the quantity 

1 
Z = -Z (o;-X;)2 (26) 

] 

can be cal led the " m e a s u r e  of cons t ra in t"  and (25) can be formula ted  as  a pr inc ip le  of l ea s t  const ra in t .  
Otherwise ,  the t he rmodynamic  motion actual ly  being rea l i zed  will  be such that  the quantity Z will  take on 
the l e a s t  poss ib le  value of all  the values  compat ible  with the given re la t ions .  

I f  all  the x i a r e  independent,  the Z reaches  it absolute min imum,  zero .  In this case  we obtain at  
once 

QT=X;, ] = 1 , 2  . . . .  n, 

which reduces  to the l i n e a r  t he rmodynamics  re la t ionships  

(27) 

(28) 

Exact ly  as the Biot  pr inc ip le ,  the var ia t ional  condition (9) admi ts  of the poss ib i l i ty  of invers ion.  Le t  
us show this  below. 

Le t  us exp re s s  the d iss ipa t ive  function as  a b i l inear  fo rm of the rmodynamic  fo rces  

1 Z D (XX) = ~ LihXiX k. (29) 
i,k 
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The dissipative forces are now expressed thus: 

OD Z LiuX~" (30) 

and the work of the dissipative forces is 

Z Z - - 1 0 D  (31) 6A = QiSxi = : L~k - ~  6x~. 
i i , k  

Substituting this into (6) and taking account of (8), we obtain 

Z L~, ( OD - - & ) 6 x i = 0 ,  (325 
i.k OXi 

which has the s t ructure  of the D'Alembert  principles.  Now, let  us go f rom (32) over to the Gauss form. 
Let  us ca r ry  out the reasoning which led us to (13). However, it is now necessa ry  to t r ans form this la t ter  
in conformity with the initial inversion of the formulas.  Since the xi sat isfy the l inear  equations 

Ii ~ xi = E LihXh, 
(33) 

k 

then the inverted form of (13) is 

6xi (l + "c) = 6xi~= ~] Lih6X~,~c. ~ (345 
k 

La te r  the forces X k and not the fluxes Ij will be variated everywhere.  Writing (325 in application to the t ime 
t + �9 and dividing both sides of the equality by r, we obtain 

(q; - I,)  6 x ,  = o. (a 5 ) .  
i 

It is easy to note that 

(36) 
Q;~X~ = 60 (xx ) ,  

l 

li6X i :- 6t~ (IX), (37) 
i 

and therefore ,  (35) is none other than the differential  form of the Dyarmaty principle [4] 

8 [~ (IX) -- D (XX)l~ = 0. (385 

The Dyarmaty variational condition turns out to have better  prospects than the Onsager principle to describe 
vector  processes  [4]. Fur thermore ,  since the fluxes are not variated,  (35) at once reduces to the Gauss 
form/ 

Z 1 (39) 
6 - ~  L ~  1 (Qi - -  Ii)  2 = O. 

i , k  

The quantity 

Z ' =  1 ~ L- '  (40) -[-  i~ (Oi - I , ) ~  

g,k 

emerges as the "measure of constraint" Z'. It should be noted that despite the outward similarity, the 
resistance coefficients L~ do not play the part of masses in nonequUibrium thermodynamics. The thermo- 
dynamic analog of the mass is not generally detected in this latter [6]. This is related to the complete 
noninertia of the phenomena under consideration. 

Now, let us turn to the Biot principle (105. Summing with respect to i on both sides of the equality, 
we obtain 

Z (  8D --;~X,)6x~=O. (41) 
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Per fo rming  the t rans format ions  which reduced (9) to the Onsager pr inciple  (18), we find 

[ ~  (JcX) --  D (xx)] X = 0. (42) 

It is easy  to see that (42) is equivalent to the Ziegler  pr inciple  of the maximum rate  of dissipation work  [3]. 
This la t te r  is formulated as: given the thermodynamic  fo rces ,  the ra tes  are  sought, which under the side 
condition 

F (x) = 20 (xx) - -  o (xX) = 0 (43) 

yield the maximum entropy production a( r~) .  The solution is obtained f rom the relat ionship 

6 [o (xX) --  ~F (x)] x = 0. (44) 

This l a t t e r  reduces  to (42) with 

2~ 

Despite the equivalence,  in pr inciple ,  of the variat ional  conditions (10), (18) and (44), which has also 
been r emarked  in [8], the Ziegler  pr inciple  is distinguished by its physical c lar i ty .  Moreover  it is eas i ly  
applicable to nonlinear p roces se s ,  as has c lea r ly  been i l lus t ra ted  in [8] in an example of many problems of 
the mechanics  of continuous media.  However,  the possibi l i t ies  of the Ziegler  principle in the case of non- 
l inear i t i es  outside the domain of the mechanics  of continuous media have not been investigated adequately.  

It  follows f rom all the above that all the variat ional  formulat ions considered [1-5] a re  equivalent in 
pr inciple .  The i r  basis  is the DTAlembert s t ruc tu re  (9) obtained by the analogy between nonequil ibrium pro-  
cesses  and the dynamics  o fd i s s i pa t i ve sys t em s .  Meanwhile, the fo rm of the representa t ion  of the var ia t ion-  
al pr inciple  of thermodynamics  turns  out to be ex t r eme ly  essent ia l  for  the solution of specific problems.  

N O T A T I O N  

S is the entropy,  
Qk a re  the dissipat ive forces ;  
D is the dissipation function; 
x k a re  the s t r e am pa rame te r s ;  
Lik  a re  the phenomenological  coeff icients;  
Xk a re  the thermodynamic  forces ;  
I k a re  the fluxes; 
~, # a re  the undetermined Lagrange mult ipl iers;  

is the en t ropy production; 
0j a r e  the normal  coordinates;  
t ,  T i s  the t ime.  
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