ON VARIATIONAL PRINCIPLES OF
NONEQUILIBRIUM THERMODYNAMICS

I. F. Bakhareva UDC 536,70

Analysis of the variational principles for nonstationary nonequilibrium processes [1-5] from
the mechanical analogy viewpoint permits it to be established that by starting from the varia-
tional condition (6) it is possible to go over to other known extremal modes. The nature of
these transformationsis similar to the Gauss method for going from the D'Alembert principle
to the principle of least constraint in mechanics,

In connection with the diversity of the variational forms existing in the literature [1-5], the question
arises as to whether they are alternatives or analytical relationships between them exist,

We show below that the variational condition [5] obtained by detailed analogies between thermodyna-
mic motion and the mechanics of dissipative systems is sufficiently general, and admits of analytical trans-
formations reducing it to other variational formulations, The nature of these transformations is analogous
to the classical method of going from the D'Alembert principle to the Gauss pr1nc1p1e of least constraint in
mechanics [7].

First, let us recall that in the linear modification the thermodynamic and dissipative forces are,
respectively

X, =S h_i 9 ... n (1
0xy,

Q=" r_1 9 .. . n (2)
Oxy,

The deviation of the entropy from its equilibrium value is expanded in a series with second order accuracy:

1
= ) E LinXiXy 5 (3)
ik
and the dissipation function D is a bilinear from in X
ik .
with reciprocity relations for the phenomenological coefficients
Lp=1Ly, i k=12 ..., n (5).

Let us start from the variational condition [5], which is in differential form

—B8(AS) + ﬁ Q;6x; = 0. (6)

On the basis of (6) it has been shown in [5] that the kinetic equations
D _
Ox; :

13

i:17 2,---,’1, (7)
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have Lagrangean structure taking account of the dissipative forces, hence there is no thermodynamic ana-
log of the kinetic energy in connection with the total noninertia of the irreversible phenomena.,

Taking into account that

8(AS) = )\ X;8x;, (8)
‘ .

(6) can be reduced to the following:

E 9D ——Xi)ﬁxi-——-O. (9)
=\ ox;

The Biot variational principle [2] is

( oD —LXi)ch,-:'O, P=1,2 ..., 1 (10)

Ox;

which Biot calls the principle of minimum rate of entropy generation: the true velocities Sti minimize

entropy production under the condition that the thermodynamic forces and the intensity of their supply

TX;xj are given, Therefore, the quantity 2D(xX) is variated while the quantity ZX;x; remains constant, but
: i

2D = i Xx;, (11)

in which connection the Biot principle is represented quite formally [8]. As regards the application of (10)
to specific problems, then as has been remarked in [9], such difficulties arise for the case n >1 that the
Biot principle loses its attractiveness. This has not been observed when using the variational condition (9),
which has been applied with the same success for any n in examining scalar and vector processes [5].

The variational condition (9) has the nature of the D'Alembert principle and, therefore, is not asso-
ciated with the extremality concept. It is known that Gauss proposed a remarkable interpretation of the
D'Alembert principle by introducing the minimality concept in the latter (the principle of least constraint).
Using this idea, let us transform (9),

At some time t let the system state xy, %,,...,X, be given. The system state at the time t + 7 can be
determined by the Taylor series

GE+D)=x50+x04. .. (12)
Since the x; are given at the initial instant t, then the variation of the first member in (12) vanishes and
8%, (t + 1) 2 Ox;7. (13)
Any virtual changes in the parameter, compatible with the relations including (13) referred to the time t + 7,
can be taken as 6x; in (9).

Let us write (9) in application to the time t + 7, let us hence take account of (2) and let us divide both

sides of the equality by T .
¥ @ —X)bx; = 0. (14)

Although the transformations going from the D'Alembert to the Gauss principle have not been completed,
let us examine (14) in greater detail. It is easy to see that (14) is none other than the Onsager variational
principle [1}. Indeed, taking into account that

Q= L%, (15)
k
> X,6x; = 80, (X¥), (16)
Lii'x,8x, = 8D (xx),
g 5%, am
we obtain at once
810 (xX) — D (xx)l, = O. ' (18)

The forces are not variated in the Onsager variational condition (18). The linear equations of thermodyna-
mics together with the reciprocity relationships are equivalent to the extremal principle (18), which Onsager
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called the principle of least energy dissipation. As has been remarked in [8], the name of the principle
does not correspond to its actual content.

By transforming (14) it is possible to proceed further and to obtain the variational condition (9) ina
form analogous to the Gauss principle of least constraints. Since the thermodynamic forces X; are con-
sidered given and cannot be variated, ox; can be represented as

8x, =8 [g Ly (Q, — xh)] (19)
and (14) can be rewritten as follows:
2@Q—X)8 ; Lip (Qu— X)) = 0, (20)
from which |
5 E 5 Lo (@ — X) (@ — X,). 1)

Going over to the normal coordinates 6 by a linear nonsingular transformation
n
X=X mf;, \ (22)
i
we find
p=LlW¢g
T2 2 "’ (23)
7
AS = — — v.02
: 2 (24)

and therefore, (21) reduces to the expression
_1 I * *
6 -‘é— (Q] - X,")2 = 0. (25)
i

Here the dissipative Q’-k and the thermodynamic X}" forces are expressed in terms of (23) and (24), res-
pectively, Following (l}auss, the quantity

, 1 # g
Z= 5 Z(QI—XJ') (26)
7

can be called the "measure of constraint" and (25) can be formulated as a principle of least constraint.,
Otherwise, the thermodynamic motion actually being realized will be such that the quantity Z will take on
the least possible value of all the values compatible with the given relations.

If all the x; are independent, the Z reaches it absolute minimum, zero. In this case we obtain at
once

QG=2X;, j=12 ...n (27
which reduces to the linear thermodynamics relationships

§,=—nv.0

i Y

(28)

Exactly as the Biot principle, the variational condition (9) admits of the possibility of inversion. Let
us show this below,

Let us express the dissipative function as a bilinear form of thermodynamic forces

1 ¢
D(XX) = 5 >-;‘ L XX, (29)
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The dissipative forces are now expressed thus:

. oD 2*1 (30}
Qi = = LihXh’
axi k )
and the work of the dissipative forces is
A\ LD . (31)
SA — .iﬁi_—_—ELi‘ bx;.
‘id e ik * 0X; i

Substituting this into (8) and taking account of (8), we obtain
OET
ik

which has the structure of the D'Alembert principles. Now, let us go from (32) over to the Gauss form.
Let us carry out the reasoning which led us to (13). However, it is now necessary to transform this latter
in conformity with the initial inversion of the formulas, Since the :ii satisfy the linear equations

L=s5= Y LuX, (33)
k

(32)

oD .
—x | 6x; =
ax, x,) x; = 0,

then the inverted form of (13) is
8, (1) = Sisr= 3 LpdX,. , (34)
- .

Later the forces Xy and not the fluxes I; will be variated everywhere. Writing (32) in application to the time
t + 7 and dividing both sides of the equality by 7, we obtain

3 (@ —1)8X, = 0. (5).
It is easy to note that
3 GisX, = 8D (XX) 56
i
318X, = 8,3 (IX), 37
and therefore, (35) is none other than the differential form of the Dyarmaty principle [4]
8[o (IX)— D (XX)], = 0. (38)

The Dyarmaty variational condition turns out to have better prospects than the Onsager principle to describe
vector processes [4]. Furthermore, since the fluxes are not variated, (35) at once reduces to the Gauss
form,

1
° };‘ 5 L @— 1y =0. (39

The quantity
Z! — _1__ E Ll_kl (Ql - Ii)2 (40)
2 ik

emerges as the "measure of constraint™ Z', It should be noted that despite the outward similarity, the
resistance coefficients Lﬁi do not play the part of masses in nonequilibrium thermodynamics. The thermo-
dynamic analog of the mass is not generally detected in this latter [6]. This is related to the complete
noninertia of the phenomena under consideration.

Now, let us turn to the Biot principle (10). Summing with respect to i on both sides of the equality,

we obtain
2( 9D —xxi) 8, — 0. (41)
ax;

i
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Performing the transformations which reduced (9) to the Onsager principle (18), we find
8 [ho (xX) — D (xx)l, = 0. (42)
It is easy to see that (42) is equivalent to the Ziegler principle of the maximum rate of dissipation work [3].

This latter is formulated as: given the thermodynamic forces, the rates are sought, which under the side
condition .

F(¥) = 2D (x5) — o (xX) = 0 43)
yield the maximum entropy production o(xX). The solution is obtained from the relationship
8 [6 (xX) — WF (%)), = 0. (44)
This latter reduces to (42) with
-+ ! (45)

2u

Despite the equivalence, in principle, of the variational conditions (10), (18) and (44), which has also
been remarked in {8], the Ziegler principle is distinguished by its physical clarity, Moreover it is easily
applicable to nonlinear processes, as has clearly been illustrated in [8] in an example of many problems of
the mechanics of continuous media, However, the possibilities of the Ziegler principle in the case of non-
linearities outside the domain of the mechanics of continuous media have not been investigated adequately.

It follows from all the above that all the variational formulations considered [1-5] are equivalent in
principle. Their basis is the D'Alembert structure (9) obtained by the analogy between nonequilibrium pro-
cesses and the dynamics of dissipative systems. Meanwhile, the form of the representation of the variation-
al principle of thermodynamics turns out to be extremely essential for the solution of specific problems,

NOTATION
S is the entropy,
Qi are the dissipative forces; -
D is the dissipation function;
XK are the stream parameters;
Ly are the phenomenological coefficients;
Xk are the thermodynamic forces;
L are the fluxes;
A, p are the undetermined Lagrange multipliers;
o is the entropy production;
GJ- are the normal coordinates;
t, T is the time.
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